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Abstract
In 1962, Bienenstock and Ewald described the classification of crystalline
space groups algebraically in the dual, or Fourier, space. After the discovery of
quasicrystals in 1984, Mermin and collaborators recognized in this description
the principle of macroscopic indistinguishability and developed techniques
that have since been applied to quasicrystals, including also periodic and
incommensurately modulated structures. This paper phrases these techniques
in terms of group cohomology. A quasicrystal is defined, along with its
space group, without requiring that it come from a quasicrystal in real (direct)
space. A certain cohomology group classifies the space groups associated to
a given point group and lattice, and the dual homology group gives all gauge
invariants. This duality is exploited to prove several results that were previously
known only in special cases, including the classification of space groups
(plane groups) for lattices of arbitrary rank in two dimensions. Extinctions in
x-ray diffraction patterns and degeneracy of electronic levels are interpreted as
physical manifestations of non-zero homology classes.

PACS numbers: 02.10.Hh, 61.50.Ah, 61.44.Br, 61.44.Fw
Mathematics Subject Classification: 20H15, 20J06

Introduction

Background

The Penrose tilings of the plane [1] have long-range order and are very symmetrical, but they
are not periodic. A few years after the discovery of these tilings, physical quasicrystals were
discovered [2–4]. These are solids with aperiodic structures that still have long-range order
and interesting symmetries, properties that are most evident in Fourier space. In fact, the
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x-ray diffraction patterns of some quasicrystals have five-fold symmetry, which is impossible
for periodic crystals. Several mathematical models for quasicrystals have been proposed. A
central question is how to classify the possible symmetries of a quasicrystal, analogously
to the classification of crystallographic groups, which describe the symmetries of periodic
crystals.

One approach to crystallography starts with the group T of translational symmetries of a
crystal. If the crystal is periodic, then T is a lattice in R3 (‘real space’ or ‘direct space’). The
space group G is the group of all isometries that preserve the crystal, and it contains T as a
normal, Abelian subgroup. The quotient G = G/T is called the point group of the crystal,
and it can be considered a subgroup of the orthogonal group O(3). A quasicrystal may have
no translational symmetries, so this approach does not generalize directly. Instead, one can
model a quasicrystal as the projection into R3 of a periodic crystal in a higher-dimensional
space (‘superspace’) [5].

This paper takes a different approach to studying quasicrystals. In 1962, Bienenstock and
Ewald [6] introduced the ‘Fourier-space approach’ to classifying symmetries of crystals. In
this picture, a crystal is described by a periodic (electron or mass) density function on R3.
The Fourier coefficients of this density function are thus defined on the dual lattice in the dual
space R3∗ (‘Fourier space’ or ‘momentum space’). The symmetries of the crystal can then be
described in terms of these Fourier coefficients, as discussed in section 1. Rokhsar, Wright and
Mermin (RWM) [7] recognized in this formalism the principle that indistinguishability under
group operations, rather than identity, underlies the symmetry of crystals. This approach has
since been applied to quasicrystals and modulated crystals [8–16]; the only change is that
one must relax the condition that the Fourier coefficients be defined on a (discrete) lattice in
Fourier space.

The Fourier-space approach to crystallography had not been expressed explicitly in terms
of group cohomology until [17], although the correspondence was pointed out by Mermin
[10] and by Piunikhin [18]. (The direct-space approach has been expressed in this language
by Ascher, Janner and others: [19–23].) The goal of this paper is to describe the Fourier-
space approach in terms of group cohomology and to show how to take advantage of this
well developed theory. Using this language, it is easy to prove and generalize results that
other authors have obtained, often by laborious calculation. (In [15], these calculations are
relegated to an appendix, and in [7], the reader is encouraged to skip them.) This paper gives
several examples. Of course, some readers will still be sceptical that it is worth learning
about cocycles and coboundaries. Such readers should be convinced by theorem 7.5, which
classifies the space groups corresponding to a given point group in two dimensions and a
Fourier-space lattice (or module) of arbitrary rank. Crystallographers interested in applying
the cohomological language to quasicrystals are also referred to [17, 24].

For the reader familiar with the cohomological language, this should provide one more
interesting application of several familiar definitions and theorems. The reader familiar with
crystallography in Fourier space will recognize in section 1 a new set of names for several
familiar ideas.

Previous work based on the RWM Fourier-space approach, but not using the
cohomological language, has been limited to computations with lattices having explicit
generators. Some results [12, 13] applied to only a few specific lattices at a time and others
[9, 10] only to lattices equivalent to principal ideals in the ring of cyclotomic integers [25].
Very little was known about lattices having non-minimal ranks consistent with their rotational
symmetry, for example, incommensurately modulated crystals. The techniques used in this
paper lift these restrictions. The results presented here provide the theoretical framework for
the first complete classifications of space groups in two and three dimensions [26].



Group cohomology and quasicrystals 10197

Summary of results

The first three sections describe the ideas studied in this paper: quasicrystals, their space
groups and their classification. For the most part, we follow the definitions and notation of
Dräger and Mermin [27]. A quasicrystal ρ̂ is defined as the coefficients of a formal Fourier
series

ρ(x) =
∑
k∈L

ρ̂(k) e2π ikx (0.1)

where L is a lattice: a finitely generated additive group that spans Rd∗ but is not necessarily
discrete. Briefly, one associates a triple (G,L, {�}) to ρ̂, where G is a subgroup of the
orthogonal group O(d), L is a lattice in Rd∗ stable under G and {�} is a cohomology class
in H 1(G, L̂), L̂ = Hom(L, R/Z). The ‘point group’ G can be thought of as the group of
macroscopic symmetries of ρ̂, and the triple (G,L, {�}) describes all symmetries, so we call
the triple the ‘symmetry type’ of ρ̂. Section 1 gives these definitions in detail. Section 2
discusses these definitions from the point of view of the function ρ defined by the series (0.1),
assuming that the series converges absolutely. This assumption is made to keep the analysis
simple; a more comprehensive treatment of the relation between quasicrystals and functions
ρ in direct space lies beyond the scope of this paper. Section 2 also discusses the relation
between this and other models of quasicrystals and the classical definition of space groups
and point groups. Section 3 explains a programme for classifying symmetry types that can
be summarized by the phrase, ‘G first, then L.’ This provides a context for most of the results
proved in the later sections. Other classifications first consider all lattices L of a given rank,
and then consider what point groups G can be associated to these lattices. The approach used
here is to fix the finite group G and then study the lattices symmetric under G.

The beauty of this programme is that, to classify d-dimensional symmetry types, there is
no need to leave dimension d. If one takes the direct-space approach, the (super)space group
of a quasicrystal is naturally a crystallographic group in a higher-dimensional superspace,
with attendant complications. On the other hand, previous work using the Fourier-space
approach, such as [7], concentrated too early on explicit generators of the lattice, and this led
to unnecessary restrictions (such as requiring the lattice to be described by a principal ideal).
Concentrating first on the group G makes it possible to calculate H 1(G, L̂) for quite general
two-dimensional lattices L. The authors are working on a paper that completes this programme
in dimension 2 and hope, in future work, to do the same for dimension 3.

Each of the remaining sections illustrates the usefulness of the cohomological language
by taking a standard result about group cohomology and applying it to crystallography. Many
of the applications are already known, although in less generality. In effect, the literature of
Fourier-space crystallography has been re-inventing the theory of group cohomology.

Perhaps the most significant result of the paper (even though it is a direct consequence
of a standard result) is theorem 5.1, which states that the cohomology group H 1(G, L̂) is
dual to the homology group H1(G,L). There are two ways of thinking of this duality. One
states that elements of H1 describe functions on H 1 and so constitute ‘fundamental gauge
invariants’ in the language introduced in section 1. In other words, this homology group
classifies all possible ‘gauge-invariant linear combinations of phases’, the simplest of which
have found physical manifestations. The opposite point of view thinks of a cohomology
class, or a gauge-equivalence class of phase functions, as a linear function on the finite group
H1(G,L). This homology group is simpler, both conceptually and computationally, than the
cohomology group. In fact, as long as one works with L̂, the Pontrjagin dual of the lattice in
Fourier space, it is unclear to what extent one is really taking a Fourier-space approach. By
concentrating on H1(G,L), we commit ourselves to this approach.
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In the superspace approach to crystallography, the space group G is an extension of G
by T , so it is described by an element of H 2(G, T ). The two approaches are connected by
making the identifications T = Hom(L, Z) and L = Hom(T , Z). From this point of view,
theorem 5.1 states that H 2(G, T ) is dual to H1

(
G, Hom(T , Z)

)
; see remark 5.3.

Sections 6 and 7 describe how the restriction-inflation sequence and the simple form
of (co)homology of cyclic groups make the computation of H1(G,L) in dimensions 2 and
3 a tractable problem. As an application, theorem 7.5 gives a complete description of this
homology group in the two-dimensional case. In physical terms, the result means that the only
two-dimensional, non-symmorphic space groups are those whose point groups are dihedral,
with cyclic subgroup of order N = 2e. This generalizes, without all the computation, results
already known in the restricted cases of lattices of minimal rank, corresponding to principal
ideals. This theorem is closely related to that of Piunikhin: remark 7.6 discusses this further.

Another important part of crystallography is the description of the physical consequences
of symmetry. Preliminary computations suggest that, in two and three dimensions, any
homology group H1(G,L) is generated by cycles of a few simple types. If so, and if
{�} ∈ H 1(G, L̂) is non-trivial, then 〈�, c〉 �= 0 where c is one of these simple cycles. Non-
vanishing gauge invariants tend to have physical implications, as described in section 8. One
of these is described by König and Mermin [15], who suggest an approach that generalizes to
quasicrystals some crystalline phenomena usually explained in terms of representation theory.
Proposition 8.1 hints at how these ideas can be simplified and generalized using cohomology.
Another subject the authors hope to consider in future work is to describe physical phenomena
associated to each of the simple cycles.

Finally, we mention proposition 4.1, corollary 5.2 and proposition 5.5. The first two
are results that were known only in cases where the gauge-equivalence (cohomology) classes
had been calculated explicitly, and the third is a non-computational proof of the result in the
appendix of [16].

This paper attempts to describe crystallography using group cohomology in a way that
can be understood both by those familiar with crystallography and by those familiar with
cohomology. The reader will judge how well it succeeds. In [17] the authors describe many
of the same ideas explicitly in terms of cocycles, and in [24] they review the connection
between crystallography and algebraic topology for those unfamiliar with the nomenclature
of homological algebra.

Notation

d coboundary map
∂ boundary map
ρ formal sum of coefficients
ρ̂ quasicrystal L → C

χ gauge function L → R/Z

�g element of L̂ corresponding to g

� phase function G → L̂

{�} gauge equivalence (cohomology) class of � in H 1(G, L̂)

G point group of ρ̂

GL point group (holohedry) of L
G space group of ρ̂

L lattice
L′ Hom(L, Q/Z)

L̂ Hom(L, R/Z), dual to L
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MG {x |gx = x, g ∈ G}
MG M/〈{kg − k | k ∈ M,g ∈ G}〉
Ng 1 + g + · · · + gN−1 if gN = 1
T lattice of direct-space or superspace translations

1. Definitions

This section defines quasicrystals and their symmetry types, the main objects of study in
this paper. Unfortunately, the language of quasicrystals is far from being standardized.
Definition 1.1 follows [27, 28] and several previous works, but some authors [29] prefer the
term quasilattice for what we call a lattice, reserving the latter term for discrete sets. We
avoid the former term, as it is sometimes used to describe instead a discrete set (not always
closed under addition) of direct-space translations. Others refer to a lattice (in the sense
used here) as a (generalized) lattice or (Fourier) module. This paper uses quasicrystal as the
most general term, encompassing periodic and aperiodic crystals; some authors use the phrase
(generalized) crystal for this, reserving the term quasicrystal for a particular kind of aperiodic
crystal. We emphasize, however, that what we are studying is the formal Fourier density ρ̂,
without commitment to the convergence of the series (0.1), except in section 2, where we
assume convergence explicitly. One might therefore think to call ρ̂ a Fourier quasicrystal or
even a quasicrystal Fourier-density coefficient, but such verbosity would seem churlish.

The rest of the definitions mostly follow Dräger and Mermin [27]. Section 2 explains
these definitions in terms of quasicrystals in real space, again following [27].

Definition 1.1. Let W be a Euclidean space. A lattice in W is a finitely generated, additive
subgroup L ⊆ W that spans W .

It is well known that a lattice is discrete if and only if its rank is the same as the dimension
of W . Since the lattice L is required to span W , the inequality rank(L) � dim(W) always
holds. In terms of physics, what we are describing is the reciprocal lattice. A periodic
crystal additionally possesses a dual direct-space lattice of translations in the same number
of dimensions, as discussed in section 2, and both lattices (reciprocal and direct) are discrete.
It does not matter in the Fourier-space approach, for the purpose of classifying symmetries,
whether a crystal is periodic or not. We do not consider here the possibility of an infinitely-
generated lattice, nor do we consider singular-continuous spectra [30, 31].

Definition 1.2. Let L be a lattice. A quasicrystal on L is a function ρ̂ : L → C such that L is
generated, as an Abelian group, by the values of k for which ρ̂(k) �= 0.

The requirement that the support of ρ̂ should generate L should be thought of as a
condition on L, not on ρ̂, since an arbitrary complex-valued function ρ̂ on a lattice L1 will be
a quasicrystal on the lattice L generated by {k | ρ̂(k) �= 0} ⊆ L1.

Definition 1.3. Let L be a lattice. A gauge function on L is an element of the Pontrjagin dual

L̂ = Hom(L, R/Z). (1.1)

Two quasicrystals ρ̂1 and ρ̂2 on L are indistinguishable if there is a gauge function χ ∈ L̂

such that

ρ̂2(k) = e2π iχ(k)ρ̂1(k) (∀k ∈ L). (1.2)

A quasicrystal on L ⊆ W can be thought of as the formal Fourier series (0.1) where x
is in the dual space of W . The motivation for these definitions comes from considering ρ̂ as
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the Fourier transform of the sum (if it exists) of such a series. If x is in the ‘real space’ Rd of
column vectors, then the space spanned by L should be thought of as the dual space, so from
now on identify W with the ‘Fourier space’ Rd∗ of row vectors3. Note that the orthogonal
group O(d) acts naturally on the left on Rd and on the right on Rd∗.

This paper makes no attempt to characterize the functions ρ for which a series (0.1) can be
defined, but section 2 explains, under restrictive analytic assumptions, what indistinguishability
means in terms of the function ρ on real space. A symmetry of a quasicrystal is defined in
terms of indistinguishability:

Definition 1.4. Let L be a lattice in Rd∗, and let ρ̂ be a quasicrystal on L. The holohedry group
GL is the subgroup of the orthogonal group O(d) consisting of all g such that L · g = L. A
symmetry of ρ̂ is an element g ∈ GL such that ρ̂ ◦ g is indistinguishable from ρ̂. In other
words, there is a gauge function �g ∈ L̂ such that

ρ̂(kg) = e2π i�g(k)ρ̂(k) (∀k ∈ L). (1.3)

The point group of ρ̂ is the group G of all such symmetries. The map � : G → L̂ is called a
phase function.

Usually the individual functions �g are also called phase functions. We avoid this usage
in order to emphasize the fact that a phase function is a gauge function that depends on the
parameter g in the point group. Note that, since ρ̂ is required to be non-zero on a set of
generators of L and �g is linear on L, relation (1.3) determines �g(k) ∈ R/Z for all k ∈ L.
It is shown in [29, section 1.2] that, even in dimension d = 2, a lattice may be symmetric
under a rotation of infinite order, so the holohedry group GL is not always finite. This paper
usually assumes that the point group of ρ̂ is finite, but most results apply generally to any
finite subgroup of the point group.

The condition k(gh) = (kg)h leads to the group-compatibility condition:

�gh(k) = �h(kg) + �g(k). (1.4)

The natural right action of O(d) on Rd∗ induces a left action of G on L̂. In terms of this action,
(1.4) reads �gh = g�h + �g . In other words, � : G → L̂ is a cocycle4 in Z1(G, L̂).

Now, let ρ̂1 and ρ̂2 be indistinguishable quasicrystals, and let χ be a gauge function as in
(1.2). Then ρ̂2 has the same point group as ρ̂1, as can be seen by defining

�(2)
g (k) = �(1)

g (k) + χ(kg − k). (1.5)

Equation (1.5) is called a gauge equivalence. In terms of the left action of G on L̂, it reads
�(2)

g −�(1)
g = gχ −χ , which means that the difference of the two cocycles is the coboundary,

or gauge transformation, gχ − χ . Since cohomologous cocycles (gauge-equivalent phase
functions) express the same symmetry of indistinguishable quasicrystals, it is natural to
associate to ρ̂ (or to its equivalence class under indistinguishability) the cohomology class
(or gauge-equivalence class) {�} ∈ H 1(G, L̂).

Definition 1.5. Let L be a lattice in Rd∗, and let ρ̂ be a quasicrystal on L. The symmetry type
of ρ̂ is the triple (G,L, {�}), where G is the point group of ρ̂ and {�} is the cohomology class
described above. The space group of ρ̂ is the extension of G by Hom(L, Z) corresponding to

3 These conventions are convenient for making the connection between direct and reciprocal space and for invoking
well-known results in cohomology [32, 33]. In most other work in Fourier-space crystallography (e.g., [7, 27, 17,
24]), an element of Fourier space is thought of as a column vector with a left group action. As a consequence, some
results here (e.g., (1.4)) will take slightly different, but entirely equivalent, forms.
4 Readers unfamiliar with terms such as cocycle are referred to [17, 24] as well as the standard references [32, 33].
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this cohomology class, as described in section 2 below. If the cohomology class is trivial, then
ρ̂, or its space group, is called symmorphic.

We use the term space group even if d = 2, where some authors might prefer plane group.
Section 2 describes the space group from the real-space point of view. The symmorphic space
group is simply the semidirect product Hom(L, Z) � G. If ρ̂ is symmorphic, then there is
some ρ̂1, indistinguishable from ρ̂, such that the phase function of ρ̂1 is zero. Then (1.3)
shows that ρ̂1 ◦ g = ρ̂1 for all g ∈ G.

Definition 1.6. Let L be a lattice in Rd∗, and let G be a subgroup of the holohedry group GL.
A gauge invariant of the pair (G,L) is a function f : H 1(G, L̂) → C. If G is finite, then a
fundamental gauge invariant is a homomorphism f : H 1(G, L̂) → C×.

Thus a gauge invariant assigns a number to each phase function, or to each quasicrystal ρ̂

on L whose point group contains G, and that number depends only on the gauge-equivalence
class. The set of all gauge invariants forms a vector space. Suppose that G is a finite group. It
follows from theorem 5.1 that H 1(G, L̂) is a finite Abelian group. Therefore, this vector space
has finite dimension, and the set of characters H 1(G, L̂) → C× forms a basis. This explains
the term fundamental gauge invariant. Any such character factors through the exponential
map e2π ix : Q/Z → C×, so we also refer to any homomorphism H 1(G, L̂) → Q/Z as a
fundamental gauge invariant. In these terms, theorem 5.1 identifies the set of fundamental
gauge invariants as the homology group H1(G,L).

2. Connections with real-space quasicrystals

For this section, assume that ρ is a function on Rd defined by an absolutely convergent series
of the form (0.1). Other authors, such as de Bruijn [34] and Hof [35], have considered the
general problem of associating Fourier series with quasicrystals, and work continues on this
question. This paper deals with what to do after obtaining the function ρ̂ on Fourier space,
so the purpose of this section is to provide a simple analytic setting to illustrate this theory,
not a comprehensive one. Of course, if the formal series (0.1) converges in any sense, then
only finitely many terms can have absolute value greater than a given positive ε. Keeping
only these terms gives a truncation of the series, or approximation of ρ, that is certainly
absolutely convergent. Taking ε small enough, or taking sufficiently many terms, should give
an approximation that has the same symmetry type as the original.

As in section 1, the terminology largely follows [27].

Definition 2.1. A density function is any function ρ : Rd → C given by an absolutely
convergent series (0.1), where ρ̂ is a quasicrystal.

Think of a density function as describing the electron density or mass density of a physical
quasicrystal. One could also refer to ρ itself as a quasicrystal.

Under the hypothesis of absolute convergence, it is easy to see that the quasicrystal ρ̂

can be recovered from the density function ρ. Let C(r) denote the cube of side r, centred at
the origin, in Rd . Multiplying (0.1) by e−2π ik′ ·x , the series is still absolutely and uniformly
convergent. Averaging over C(r) gives

1

rd

∫
C(r)

ρ(x) e−2π ik′ ·x dx =
∑
k∈L

ρ̂(k)
1

rd

∫
C(r)

e2π i(k−k′)·x dx, (2.1)

which converges absolutely and uniformly in r. Taking the limit as r → ∞ gives ρ̂(k′).
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Define the positionally-averaged nth-order autocorrelation function of the density function
ρ to be

ρ(n)(x1, . . . , xn) = 1

rd

∫
C(r)

ρ(x1 − x) · · · ρ(xn − x) dx. (2.2)

Since the product of absolutely convergent series is absolutely convergent, ρ(x1 − x) · · ·
ρ(xn −x) is represented by an absolutely convergent series of the form (0.1), and the argument
of the preceding paragraph shows that the same is true of the autocorrelation function:

ρ(n)(x1, . . . , xn) =
∑

k1,...,kn∈L
k1+···+kn=0

ρ̂(k1) · · · ρ̂(kn) e2π i(k1·x1+···+kn·xn). (2.3)

Two density functions ρ1, ρ2 : Rd → C are called indistinguishable if their autocorrelation
functions are the same. Mermin [36] and others have argued that using this criterion, rather
than considering identity of density functions, is the most important theoretical difference
between the Fourier-space approach and traditional crystallography. If two quasicrystals ρ̂1

and ρ̂2 are indistinguishable (as defined in section 1), then the corresponding density functions
ρ1 and ρ2 are as well. It follows that a symmetry of ρ̂ is a rotation g such that ρ ◦ g is
indistinguishable from ρ, or a macroscopic symmetry of ρ. Define the point group of the
density function ρ to be the same as the point group of the corresponding quasicrystal ρ̂.

If the density function ρ describes a periodic crystal, then ρ is periodic with respect to a
lattice T ⊆ Rd , and L is dual to T (assuming that T is the lattice of all periods of ρ). In this
case, L is a discrete lattice, so a gauge function (an element of L̂ = Hom(L, R/Z) = Rd/T )
is determined by a translation on Rd , and a symmetry of L is an orthogonal transformation of
Rd that takes T to itself. In other words, the holohedry group GL is the quotient of the space
group GT of T —the group of isometries that preserve T —by the subgroup of translations
corresponding to elements of T . From this point of view, the action of GL on T is induced
by the conjugation action of GT on its subgroup of translations. The density function ρ can
be thought of as an additional structure, or ‘decoration’, on the lattice T . The space group of
ρ is the group G of all isometries g that respect this additional structure, ρ ◦ g = ρ, and the
point group G = G/T is a subgroup of GL.

Still in the periodic case, G ∼= T × G as a set. The group structure of G can be
recovered from the conjugation action of G on T and an element of H 2(G, T ) ([23], [19], [32,
section IV.3] or [33, section 2]). As Hiller points out in [23], the boundary map of the
long exact sequence associated to 0 → T → Rd → Rd/T → 0 gives an isomorphism of
H 2(G, T ) with H 1(G, Rd/T ). Since Rd/T ∼= Hom(L, R/Z), this is the cohomology group
considered in definition 1.5.

In the general case, turn these definitions around as in [27]. Start with the lattice L ⊆ Rd∗

and define T = Hom(L, Z), naturally embedded in V = Hom(L, R). In the aperiodic case,
dim V = rank L > d. This gives a coordinate-free description of the superspace V . In this
context, the group G defined by the cohomology class {�} ∈ H 1(G, L̂) ∼= H 2(G, T ) is often
called a superspace group, but this paper uses the term space group.

It is not needed in this paper, but one often considers G as a crystallographic group of
isometries of V . In order to do so, one must define a Euclidean inner product on V , a point
neglected in [27]. Since L spans Rd∗, the inclusion L ⊆ Rd∗ leads to a natural inclusion
Rd ⊆ V , compatible with the action of G. Take any positive-definite inner product on V

that extends the standard one on Rd , and average over G. This gives a G-invariant inner
product on V that restricts to the usual one on Rd , as required. Not all choices disappear
during the averaging process: if one views the action of G on V as a group representation,
each irreducible subrepresentation (outside Rd ) can be given an independent scale factor, and
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isomorphic irreducible subrepresentations may or may not be orthogonal. Any such inner
product on V leads to an orthogonal projection V → Rd , and the image of T under this
projection will be a lattice.

Two other models of aperiodic quasicrystals start with a lattice T ⊆ V ∼= RD and an
embedding Rd ↪→ V that meets T in at most one point. Taking L = Hom(T , Z), one can
think of these data in the terms described above. The ‘cut-and-project’ model takes a particular
‘slice’ S ⊂ T and a projection p : V → Rd ; the set p(S) is considered a quasicrystal. The
other model takes a tiling of V , periodic with respect to T , and intersects this tiling with Rd .
In this variant, the set of vertices of the resulting tiling of Rd is the model of a quasicrystal. In
either case, a suitably general theory of the Fourier transform (see [37] or [38]) applied to the
sum of delta functions at points of the quasicrystal leads to a set of Fourier coefficients ρ̂(k)

for k ∈ L. The series
∑

k |ρ̂(k)| need not converge, so the results of this section do not apply,
but the hypothesis of absolute convergence is not used in the rest of this paper.

3. Classification

The terminology in this section mostly follows [27]. In section 1, a symmetry type was
defined to be a triple (G,L, {�}), where G is a finite subgroup of the orthogonal group
O(d), L is a lattice in Rd∗ symmetric under G and {�} is a cohomology class in H 1(G, L̂). A
symmetry type corresponds to a space group, although the (algebraic structure of the) space
group determines only the algebraic structure of the lattice, not its embedding in Rd∗. This
section defines when two symmetry types should be considered equivalent and describes a
programme for classifying them. Since equivalent symmetry types have isomorphic space
groups, we usually talk of classifying space groups.

Definition 3.1. Two pairs (G1, L1) and (G2, L2) are in the same arithmetic crystal class if
there is a proper rotation r ∈ SO(d) and an isomorphism f : L1 → L2 as Abelian groups
such that G2 = rG1r

−1 and f (kg) = f (k) rgr−1 for all k ∈ L1 and g ∈ G1.

Consider first the case f (k) = kr−1. Requiring r ∈ SO(d) means that, in the case
d = 2, mirror-image lattices are not necessarily in the same arithmetic crystal class [25]. Next
suppose that r is the identity. Since f is not required to extend to a continuous map on Rd∗,
this allows for continuous families of lattices all in the same arithmetic crystal class (see note
8 in [27]).

Definition 3.2. Two symmetry types (G1, L1, {�1}) and (G2, L2, {�2}) are in the same space-
group type if (G1, L1) and (G2, L2) are in the same arithmetic crystal class and it is possible
to choose r and f as in definition 3.1 in such a way that {�2} = {f ◦ �1 ◦ cr} ∈ H 1(G2, L̂2),
where cr : G2 → G1 is the conjugation map cr(g) = r−1gr .

One possibility, which does not occur with discrete lattices, is that G1 = G2, L1 = L2,
and f is a non-trivial dilation. For example, identifying the complex plane with R2∗, let
ζ = e2π i/5 and L = Z[ζ ]. Then f (x) = (ζ + ζ−1)x gives an isomorphism of L onto itself, and
ζ + ζ−1 = (

√
5 − 1)/2 is a real number between 0 and 1. The identification of the symmetry

types described by � and f ◦ � is sometimes called scale invariance [8].
One of the main goals of crystallography is to classify the possible space-group types. This

paper considers only the case where G is finite; see [29] for examples and further discussion of
lattices with infinite holohedry groups. We propose the following classification programme:

(1) Find all finite groups G ⊆ O(d), up to conjugation by SO(d).
(2) For each point group G, classify the lattices L that are stable under G.
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(3) Calculate the cohomology group H 1(G, L̂).
(4) Consider the action of automorphisms of the pair (G,L) on this cohomology group. That

is, consider f and r as above in the case G1 = G2 = G and L1 = L2 = L.

The first step is well known in dimensions 2 and 3. If d = 2, such a group is either cyclic
or dihedral; in the latter case, one can take the x-axis as one of the mirror lines. If d = 3, see,
for example, (39, appendices A and B). In two dimensions, step 2 can be done using ideas
from integer representation theory, especially the theory of twisted group algebras: see [28,
section 28] and [40]. The authors are working on a paper that explains these ideas in simpler
terms. The results of the current paper are useful for the third step. Sections 6 and 7 compute
H 1(G, L̂) in the case d = 2. The authors hope to study the case d = 3 in future work. The
final step of the classification is actually quite controversial; perhaps it is safest to say that,
for some applications, it is appropriate to identify the cohomology class of � with that of
f ◦ � ◦ cr . In any event, this step will depend on the solution of step 2.

We summarize this approach to classification with the phrase, ‘G first, then L’. We feel this
is appropriate in the Fourier-space approach to quasicrystals, since the symmetry of an x-ray
diffraction pattern is more apparent than the rank of the lattice. (The diffraction pattern may
have more symmetries than the point group.) Perhaps more significantly, arbitrary lattices are
much more varied than discrete lattices, so it is helpful to impose some order by first specifying
the point group, as in the first step of the classification programme. For these reasons,
definition 3.1 differs from the definition in [27]: Dräger and Mermin say that two quasicrystals
are in the same arithmetic crystal class only if the holohedry groups GL1 and GL2 as well as
the point groups G1 and G2 are related by the proper rotation r in definition 3.1 (although note
8 in [27] partially contradicts this). In a sense, the ‘G first’ approach is not really new: several
papers, such as [7], assume that the lattice L has minimal rank consistent with its rotational
symmetry, which is very natural from this point of view.

Sometimes the ‘G first’ approach requires very minor adjustments. For example, [7,
9] discuss the two-dimensional lattice L of equilateral triangles, symmetric under a six-fold
rotation. Fixing the lattice, there are two distinct copies of the dihedral group D3 (or 3m in
international crystallographic notation) inside the holohedry group GL: one contains mirror
lines through the shortest vectors, and the other contains mirror lines between the shortest
vectors. In the ‘G first’ approach, one instead fixes the dihedral group D3 containing the
reflection in the x-axis. There are then two types of lattice, one with its shortest vectors along
the mirror lines and one with its shortest vectors between the mirror lines. Evidently, these
are two different ways of describing the same situation.

A more significant difference between the two approaches emerges when considering the
square lattice. Here, if the lattice is fixed, then there is only one dihedral group D4, with
mirror lines both through and between the shortest vectors. However, if the group is fixed,
and one of the mirror lines is identified with the x-axis, then there are two square lattices to
consider: one with a shortest vector along the x-axis and one with shortest vector along the 45◦

line. In our classification programme, these two lattices are considered distinct until the final
step. This distinction is essential when classifying lattices of non-minimal rank, as discussed
in [26]. Similar remarks apply when considering DN where N is any higher power of 2.

4. Higher cohomology is torsion

In this section, assume that G is a finite group acting on the right on a free Abelian group L of
finite rank. Let

N = #G. (4.1)
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A standard theorem ([32, section VI.5] or [33, section 6, corollary 2]) states that the Tate
cohomology groups Ĥ i(G,M) are torsion, killed by N. In particular, the homology group
H1(G,M) = Ĥ−2(G,M) and the cohomology group H 1(G,M) = Ĥ 1(G,M) are killed by
N. In the crystallographic literature so far, the following consequence has been noted only
in the cases where the cohomology group has been explicitly calculated [7, 9, 10]. Give the
Pontrjagin dual L̂ = Hom(L, R/Z) the standard left G-action, (gχ)(k) = χ(kg).

Proposition 4.1. Given a cohomology class in H 1(G, L̂), one can choose a representative
cocycle � so that

�g(k) ∈
(

1

N
Z

) /
Z (g ∈ G, k ∈ L).

That is, with a suitable choice of gauge, any phase function takes values in
(

1
N

Z
)/

Z.

Proof. Since the cohomology class of � is killed by N,N� is a coboundary. In other
words, there is a χ ∈ L̂ such that N� = dχ , where d is the coboundary operator. Since
L̂ ∼= (R/Z)rank(L), one can choose χ1 ∈ L̂ such that Nχ1 = χ . Let �(1) = � − dχ1. Then
�(1) is in the same cohomology class as �, and N�(1) = N� − dχ = 0. In terms of g ∈ G

and k ∈ L, this means that N�(1)
g (k) = 0 ∈ R/Z, or �(1)

g (k) ∈ (
1
N

Z
)/

Z. �

Notation 4.2. If A is any Abelian group, denote the dual of A by

A′ = Hom(A, Q/Z).

If A is a right G-module, then give A′ the standard left G-module structure: for g ∈ G,φ ∈ A′

and any a ∈ A, gφ is defined by (gφ)(a) = φ(ag). If A is a left G-module, then gφ is defined
by (gφ)(a) = φ(g−1a), or (gφ)(ga) = φ(a).

Proposition 4.3. There is a natural isomorphism H 1(G,L′) ∼→ H 1(G, L̂).

Proof. Since L is a finitely generated free Abelian group, the short exact sequence
0 → Q/Z → R/Z → R/Q → 0 leads to the short exact sequence

0 → L′ → L̂ → Hom(L, R/Q) → 0, (4.2)

and Hom(L, R/Q) ∼= (R/Q)r , with r = rank(L). Since R/Q is uniquely divisible, its Tate
cohomology groups vanish, so the long exact sequence of Tate cohomology gives

0 = Ĥ 0(G, Hom(L, R/Q)) → H 1(G,L′) → H 1(G, L̂) → 0. (4.3)
�

We need this proposition to apply the duality theorem we quote in section 5, which is
stated in terms of L′. Note that surjectivity in proposition 4.3, but not injectivity, also follows
from proposition 4.1.

Remark 4.4. If ρ1 and ρ2 are indistinguishable quasicrystals, then definition 1.3 requires
ρ̂2(k) = e2π iχ(k)ρ̂1(k), where χ ∈ L̂. This implies that χ(k) ∈ R/Z, so that |ρ̂1(k)| = |ρ̂2(k)|.
If one were to relax this condition, one would take χ : L → C/Z, so that e2π iχ(k) could be
any non-zero complex number. Making the corresponding change in definition 1.4, one
would consider cohomology with coefficients in Hom(L, C/Z) instead of L̂. The analogues
of propositions 4.1 and 4.3 would still hold, so H 1(G, Hom(L, C/Z)) ∼= H 1(G, L̂). In
other words, the alternative definition of indistinguishability does not lead to any new
symmetry types, and a quasicrystal ρ̂1 with point group G under the alternative definition
is indistinguishable (in the alternative sense) from a quasicrystal ρ̂2 that has point group G
using either definition.
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5. Cohomology is dual to homology

In this section, assume that G is a finite group acting on the right on a finitely generated
Abelian group L. In particular, this implies that H1(G,L) is finite.

In section 1, we observed that any gauge invariant f : H 1(G, L̂) → C can be expressed
in terms of the fundamental gauge invariants, the homomorphisms H 1(G, L̂) → Q/Z.
According to proposition 4.3, the set of fundamental gauge invariants is H 1(G,L′)′ (cf
notation 4.2). We now interpret this set as a homology group. If M is a right G-module then
write 1-chains, or elements of M ⊗ ZG, as c = ∑

g mg[g], where g ∈ G and mg ∈ M . The
boundary map is defined by

∂(m[g]) = mg − m. (5.1)

For details, see [32, section III.1] or [33, section 3].

Theorem 5.1. Let G be a finite group, and let L be a finitely generated Abelian group on which
G acts. Let L̂, H1(G,L)∧ and H 1(G, L̂)∧ denote the Pontrjagin duals as in (1.1). There are
natural isomorphisms H1(G,L) ∼→ H 1(G, L̂)∧ and H 1(G, L̂) ∼→ H1(G,L)∧, induced by the
duality pairing

H 1(G, L̂) × H1(G,L) → R/Z
(5.2)

({�}, {c}) �→ 〈�, c〉 =
∑
g∈G

�g(kg),

where c = ∑
g kg[g].

Proof. According to proposition 4.3, the natural map from H 1(G,L′) to H 1(G, L̂) is an
isomorphism, where L′ = Hom(L, Q/Z) as in notation 4.2. The finiteness hypotheses on G
and L imply that H1(G,L) is a finite group. It follows that the pairing in the theorem takes
values in Q/Z and that H1(G,L)∧ = H1(G,L)′. Roughly speaking, the finiteness hypotheses
imply that one can replace R/Z with Q/Z throughout.

According to (32 proposition VI.7.1), there is a duality pairing between H 1(G,L′) and
H1(G,L) that identifies each with the dual of the other (in the sense of notation 4.2). Up to
a sign, this pairing agrees with that in the statement of the theorem by [32, section V.3] and
[32, section III.1, example 3]. In particular, this shows that H 1(G,L′) is a finite group, so
H 1(G, L̂)∧ = H 1(G,L′)∧ = H 1(G,L′)′. Thus the duality of the theorem is just a restatement
of the duality between H 1(G,L′) and H1(G,L). �

Corollary 5.2. The gauge-equivalence class of the phase function � is determined by the
gauge-invariant rational numbers 〈�, c〉 for c ∈ H1(G,L).

Proof. This is simply a restatement of the injectivity of the map H 1(G, L̂) → H1(G,L)∧.
�

Remark 5.3. As noted in section 2, the view from superspace is that the class {�} in
H 1(G, L̂) ∼= H 2(G, T ) describes the space group G, an extension of G by T = Hom(L, Z).
Recall that L̂ ∼= V/T , where V denotes the superspace V = T ⊗ R. As described in [23],
�g ∈ V/T is the coset of T consisting of all translations that can be combined with g to
give an element of the space group G. Theorem 5.1 still applies, so H 1(G, V/T ) is dual to
H1(G,L) = H1(G, Hom(T , Z)).

Let us make this duality pairing explicit. Let c = ∑
g kg[g] be a cycle, with coefficients

kg ∈ Hom(T , Z), and let � be a cocycle as above. Choose a basis t1, . . . , tn of T over
Z; it is also an R-basis of V . If v = v1t1 + · · · + vntn ∈ V and k ∈ Hom(T , Z), define
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〈v, k〉 = v1 k(t1) + · · · + vnk(tn) ∈ R. Similarly, define 〈v̄, k〉 ∈ R/Z if v̄ ∈ V/T . Then the
duality pairing is defined by 〈�, c〉 = ∑

g〈�g, kg〉.
Remark 5.4. The simplest example of a 1-chain is c = k[g], with k ∈ L and g ∈ G. By (5.1),
this chain is a cycle if and only if kg = k, and in this case the corresponding gauge invariant
is simply �g(k). However, the homology group H1(G,L) is not always generated by cycles
of this form. In other words, it is possible for two gauge-inequivalent cocycles �(1) and �(2)

to have the same ‘obvious’ gauge invariants: �(1)
g (k) = �(2)

g (k) whenever kg = k. In fact,
of the 230 classical space groups, there are two non-symmorphic ones, denoted by I212121

and I213 in international crystallographic notation, for which all cycles of the form c = k[g]
are boundaries [10, 15]. Since these space groups are non-symmorphic, theorem 5.1 shows
that H1(G,L) �= 0, so there must be other cycles. What is the next simplest cycle one can
construct? Since H1(G,L) is killed by N = #G, any cycle becomes trivial in H1

(
G, 1

N
L

)
,

so it is natural to consider the boundary of a 2-chain with values in 1
N

L: if the result happens
to have coefficients in L, it is a 1-cycle in H1(G,L). In the notation of [32, section III.1,
example 3], the boundary of the 2-chain q[g|h] (where q ∈ 1

N
L and g, h ∈ G) is given by

∂(q[g|h]) = (qg)[h] − q[gh] + q[g]. (5.3)

This cannot give a non-trivial homology class in H1(G,L) by itself. Perhaps the simplest
combination that can is

∂(q[g|h] − q[h|g]) = (qg − q)[h] − q([gh] − [hg]) + (q − qh)[g], (5.4)

which will have values in L ⊗ ZG provided that qg − q, qh − q ∈ L and gh = hg. It is a
simple exercise to calculate the homology groups corresponding to the two exceptional space
groups I212121 and I213. (See [17] for one of the two cases.) In both cases, the homology
group is cyclic of order 2, generated by the class of such a cycle.

Gauge invariants are considered again in section 8. We conclude this section with a new
proof of the result in the appendix of [16]. This states that if the ‘obvious’ gauge invariants
of � corresponding to a single g ∈ G vanish, then (up to gauge equivalence) �g is trivial.
The examples cited above show that one cannot necessarily find a gauge in which �g = 0
simultaneously for all g ∈ G, even if all these gauge invariants vanish.

Proposition 5.5. Let g ∈ G, and let {�} ∈ H 1(G, L̂). If one choice of � satisfies �g = 0 on
Lg = {k ∈ L | kg = k}, then one can choose � such that �g(k) = 0 for all k ∈ L.

Proof. Let 〈g〉 = {1, g, . . . , gN−1} denote the subgroup of G generated by g. We claim
that � is trivial in H 1(〈g〉, L̂). By corollary 5.2, it suffices to show that 〈�, c〉 = 0 for all
c ∈ H1(〈g〉, L). According to (6.5), H1(〈g〉, L) = Lg/NgL, where Ng = 1 + g + · · · + gN−1.
Therefore the hypothesis �g(L

g) = 0 justifies the claim.
Since � is trivial in H 1(〈g〉, L̂), there is some χ ∈ L̂ for which �g = (dχ)g = gχ − χ .

Then �(1) = � − dχ represents the same class in H 1(G, L̂), and �(1)
g = 0. �

6. Homology and cohomology of cyclic groups

This section and the following one classify the space groups corresponding to the finite point
group G and the lattice L in two dimensions. This section discusses cyclic groups, and the
next deals with dihedral groups. The classification applies to ‘non-standard’ [25] as well as to
‘standard’ lattices and applies whether or not the rank of L is minimal given that L is symmetric
under G. Work in progress [26] classifies the lattices of non-minimal rank symmetric under G.
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Let G be a finite cyclic group, say

G = 〈r〉 = {1, r, . . . , rN−1}. (6.1)

(If G is a subgroup of O(2) or O(3), then the generating element r might be a rotation or, for
N = 2, it might be a mirror.) If M is any left G-module, then think of r − 1 and the norm
element

Nr = 1 + r + · · · + rN−1 (6.2)

in terms of their actions on M: (r − 1)x = rx − x and Nrx = x + rx + · · · + rN−1x.
According to [32, section III.1] or [33, section 8], the Tate cohomology groups can, in this
case, be computed as the cohomology of the complex

· · · Nr→ M
r−1→ M

Nr→ M
r−1→ M

Nr→ · · · . (6.3)

In particular,

H 1(G,M) = Ĥ 1(G,M) = ker(Nr)/(r − 1)M; (6.4)

H1(G,M) = Ĥ−2(G,M) = ker(r − 1)/NrM. (6.5)

Note that the kernel of r − 1 is Mr = {x ∈ M | rx = x}.
In traditional crystallography, this description of the (co)homology groups is of limited

interest since a two- or three-dimensional rotation that stabilizes a discrete lattice can only
have order 1, 2, 3, 4 or 6. Quasicrystals can be symmetric under rotations of any order, so
these results become much more useful.

The following proposition shows that if a two-dimensional point group is cyclic (of order
N > 1) then the only corresponding space group is the symmorphic one. Note that this
analysis applies uniformly to any two-dimensional lattice. The case where L ∼= Z[e2π i/N ] is
treated in [7].

Proposition 6.1. Let L ⊆ R2∗ be a lattice invariant under G = 〈r〉, where r is a rotation of
order N > 1. Then H 1(G, L̂) = 0.

Proof. It is easier to work with homology of L than the cohomology of L̂, so consider
H1(G,L). The only vector in R2∗ fixed by a non-trivial rotation is the zero vector. According
to (6.5), this shows that H1(G,L) = 0. The result now follows from theorem 5.1. �

7. The restriction-inflation sequence

For this section, let G be a finite group, let H � G be a normal subgroup and let

Q = G/H (7.1)

denote the quotient. For any left G-module M, the inflation map H 1(Q,MH) → H 1(G,M)

and the restriction map H 1(G,M) → H 1(H,M) fit together to give an exact sequence [33,
section 5]

0 → H 1(Q,MH) → H 1(G,M) → H 1(H,M). (7.2)

This can be viewed as a consequence of the Hochschild–Serre spectral sequence, as can its
homological version [32, theorem VII.6.3]:

H1(H,M) → H1(G,M) → H1(Q,MH) → 0, (7.3)

where M is now a right G-module and MH denotes the quotient of M by the H-submodule
generated by {xh − x | x ∈ M,h ∈ H }.
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Let G ⊆ O(3) be a finite group. By the classification of such groups (appendices A and
B in [39]), there are several infinite families of such G and finitely many sporadic ones, which
must be dealt with on a case-by-case basis. Letting G be in one of the infinite families, it
contains a normal, cyclic subgroup H, generated by a rotation or a roto-inversion, for which
the quotient group Q = G/H has order 1, 2 or 4. Since H is cyclic, the homology group
H1(H,L) can be computed using (6.5). In the simplest case, H is generated by a roto-inversion,
so H1(H,L) = 0, and H1(G,L) = H1(Q,LH ) by (7.3). We now apply this approach to the
two-dimensional case.

Notation 7.1. For the rest of this section, let L ⊆ R2∗ be a lattice invariant under the dihedral
group with 2N elements:

G = DN = 〈r,m〉 ⊆ O(2), (7.4)

where r is a rotation of order N > 1 and m is a reflection. Let

H = CN = 〈r〉, D1 = DN/H = {e, m̃} (7.5)

denote the cyclic subgroup of DN and the quotient group. Let

ζ = ζN = e2π i/N , (7.6)

so that L is a module over the ring of cyclotomic integers Z[ζ ], and note that LH = L/(1−ζ )L.
Let

F2 = Z/2Z (7.7)

denote the field with two elements.

The results that follow show that H 1(DN, L̂) = 0, so every space group corresponding
to DN and L is symmorphic, unless N is a power of 2. If N = 2e, then theorem 7.5 states
that H 1(DN, L̂) is a vector space over the field with two elements and counts its dimension.
In other words, still assuming N = 2e, the fundamental invariants all take the values 0 and
1/2 (modulo 1). In particular, if L has rank 1 as a Z[ζ ]-module, then the cohomology group
has exactly two elements: one corresponds to the symmorphic space group, and the other
corresponds to a non-symmorphic group. These results were obtained in [7] under the more
restrictive assumption that L ∼= Z[ζ ] as a Z[ζ ]-module.

Proposition 7.2. If N is not a power of 2, then H 1(DN, L̂) = 0. If N is a power of 2, then
LH is a vector space over F2.

Proof. By theorem 5.1, it suffices to compute H1(DN,L). By proposition 6.1, H1(H,L) = 0.
Then (7.3) implies that H1(DN,L) ∼→ H1(D1, LH ). According to lemma 7.3, 1 − ζ is a
unit unless N = pe is a prime power, in which case its norm is p. Thus LH = 0, and
H1(DN,L) = 0, unless N = pe.

Suppose now that N = pe. Then LH is a vector space over Z[ζ ]/(1 − ζ ) ∼= Fp, the field
with p elements. If p = 2, this justifies the last claim in the statement. Now assume that p is
odd. Decompose LH into eigenspaces for m̃: LH = LH

+ ⊕ LH
−. On LH

+, Nm̃ = 1 + m̃ = 2,
so Nm̃LH

+ = 2LH
+ = LH

+ (since multiplication by 2 is an isomorphism on an Fp-vector
space when p is odd), and H1

(
D1, LH

+
) = 0 by (6.5). On the other hand, (LH

−)m̃ = 0, so
H1(D1, LH

−) = 0 as well. Therefore, H1(D1, LH ) = H1
(
D1, LH

+
) ⊕ H1(D1, LH

−) = 0.
�

The following lemma is not original, but we do not know a convenient reference for it.
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Lemma 7.3. Let N > 1, ζ = ζN = e2π i/N , and let NQ(ζ ) denote the norm from Q(ζ ) to Q. If
N = pe is a prime power, then NQ(ζ )(1 − ζ ) = p; otherwise, NQ(ζ )(1 − ζ ) = 1.

Proof. Let FN(x) denote the cyclotomic polynomial of order N. That is, FN(x) is the monic,
irreducible polynomial whose roots are the primitive Nth roots of unity5. Since these are
exactly the conjugates of ζ over Q, it follows that

FN(1) =
∏

FN(α)=0

(1 − α) = NQ(ζ )(1 − ζ ).

Since the roots of xN − 1 are all the Nth roots of unity, xN − 1 = ∏
d|N Fd(x). Dividing

by x − 1 and setting x = 1 leads to N = ∏
1<d|N Fd(1). The lemma now follows by induction

on N. �

Notation 7.4. Let M be an n × n matrix over F2 such that M2 = In. The Jordan normal
form of M consists of 1 × 1 and 2 × 2 blocks only, with the number 1 the only possible
eigenvalue. For example, the Jordan normal form of the standard 2 × 2 reflection matrix

[ 0 1
1 0

]
is

[ 1 0
1 1

]
. Let j1(M) denote the number of 1 × 1 Jordan blocks and j2(M) denote the number

of (defective) 2×2 Jordan blocks in the Jordan normal form of M. Then j1(M)+ 2j2(M) = n,
and j1(M) + j2(M) = n − j2(M) is the dimension of the 1-eigenspace of M.

Theorem 7.5. Let L ⊆ R2∗ be a lattice invariant under G = CN or DN . Then H 1(G, L̂) = 0
unless G = DN and N = 2e, with e � 1. In this case, let M be the matrix of m̃ acting on the
F2-vector space LH . Then H 1(DN, L̂) is an F2-vector space of dimension j1(M).

Proof. The case G = CN is considered in proposition 6.1, so assume that G = DN .
Proposition 7.2 shows that the cohomology group vanishes if N is not a power of 2, so assume
now that N = 2e. By theorem 5.1, H 1(DN, L̂) is dual to H1(DN,L), so it suffices to show
that this homology group has the stated form. By proposition 6.1 and the exact sequence (7.3),
H1(DN,L) ∼= H1(D1, LH ).

Since D1 = {e, m̃}, it follows from (6.5) that H1(D1, LH ) ∼= (LH )m̃/(1 + m̃)LH . Note
that, although m is antilinear, m̃ is linear as a map on LH , so notation 7.4 applies. An
easy calculation shows that each 1 × 1 Jordan block contributes a one-dimensional space to
H1(D1, LH ) and that each 2 × 2 Jordan block contributes nothing. �

Remark 7.6. Piunikhin [18] recognized the cohomological interpretation of phase functions
and noted that H 1(G, L̂) describes an extension 1 → Hom(L, Z) → G → G → 1. Piunikhin
implicitly assumes that Hom(L, Z) is a lattice if L is. We do not see a natural way to regard
Hom(L, Z) as a lattice, but as we described in section 2 there are many ways to do so, all in
the same arithmetic crystal class. Given this, G is a quasicrystallographic group in the sense
of Novikov’, and Piunikhin’s classification [41] of such groups (with finite point group G) in
two dimensions answers the same question as theorem 7.5 here. Our proof is different, and the
description here of the dimension of H 1(G, L̂) is simpler than Piunikhin’s: he describes the
classification in terms of an anti-linear involution on L, while theorem 7.5 uses linear algebra
over F2.

This is a good place to point out a misstatement in [41]. Let T denote a lattice in
R2, invariant under DN with N even. Then T can be thought of as a Z[ζ ]-module. Let I
denote the anti-linear involution of T corresponding to a mirror reflection m ∈ DN . Piunikhin
describes the correspondence between isomorphism classes of such pairs (T , I ) and arithmetic
crystal classes of such lattices as being 2-to-1, since (T , I ) and (T , ζ I ) are not isomorphic as
5 The usual notation for this polynomial is �N(x). In this paper, � is used to denote a phase function.
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modules with involution. This is not true in general: for example, consider T = Z[ζ2N ] as a
Z[ζ ]-module, and let I be complex conjugation.

8. Cohomology products and physical implications

This section uses the notation and hypotheses of sections 1 and 2. For physical applications,
work in dimension d = 3. In particular, G is a finite subgroup of the orthogonal group O(3), ρ̂
is a quasicrystal on the lattice L ⊆ R3∗ and � is the corresponding phase function, or cocycle,
representing a cohomology class in H 1(G, L̂). So far, we have considered only geometric
aspects of crystallography. This section discusses some physical implications. We show that
the language of group cohomology, especially the cup and cap products, provides a convenient
framework for making connections between phase functions and group representations.

Given a map M ⊗Z N → P of G-modules, one constructs the cup product

Hm(G,M) × Hn(G,N)
∪→ Hm+n(G, P ) (8.1)

and, if m � n, the cap product

Hm(G,M) × Hn(G,N)
∩→ Hn−m(G,P ) (8.2)

as in [32, section V.3] or [33, section 7]. If m = n and M = N ′, then (up to a sign) the cap
product is the same as the duality pairing of section 5, with H0(G, P ) = H0(G, Q/Z) = Q/Z.
Among the various properties enjoyed by these two products are two associative laws:
(α ∪ β) ∪ γ = α ∪ (β ∪ γ ) and (α ∪ β) ∩ c = α ∩ (β ∩ c) if α, β, γ ∈ H ∗, c ∈ H∗
and the coefficients are chosen compatibly.

Recall from sections 1 and 5 that elements of H 1(G, L̂) describe symmetry types of
quasicrystals and that H1(G,L) is the set of fundamental gauge invariants. These are related
to several other (co)homology groups by the cup and cap products, and these groups also have
important interpretations.

Consider H 1(G,L). If q ∈ R3∗ satisfies qg −q ∈ L for all g ∈ G, then σ(g) = qg−1 −q

is a cocycle with values in L. From the long exact sequence [32, proposition 0.4] or [33,
theorem 1] associated to 0 → L → R3∗ → R3∗/L → 0, it follows that any class in H 1(G,L)

is represented by such a cocycle.
Next, recall the interpretation of the cohomology group H 2(G, Q/Z). A projective

representation, or ray representation, of G is a homomorphism into the projective linear
group PGL(n), just as an ordinary representation is a homomorphism into the general linear
group GL(n). One associates to each projective representation a 2-cocycle, or factor system,
with values in C×; the factor system depends on additional choices, but its cohomology
class in the Schur multiplier H 2(G, C×) depends only on the representation. One standard
reference is [28, section 11.E]. In fact, this theory is one of the main precursors of group
cohomology. Since G is a finite group, the exponential map Q/Z → C× gives an isomorphism
H 2(G, Q/Z) ∼→ H 2(G, C×) (cf section 4). The same duality theorem (32, proposition VI.7.1)
cited in the proof of theorem 5.1 shows that H2(G, Z) is dual to H 2(G, Q/Z), so 2-cycles
with integer coefficients can be thought of as invariants of factor systems.

We are now ready to discuss physical applications. Let � ∈ H 1(G, L̂) be non-trivial, so
that it represents a non-symmorphic space group. By theorem 5.1, there is some c ∈ H1(G,L)

such that 〈�, c〉 �= 0. It is reasonable to hope that there is a physical way to distinguish a
non-symmorphic quasicrystal from a symmorphic one, so one expects such a non-trivial gauge
invariant to have physical implications. If c is represented by a cycle of the form k[g] (with
k ∈ L, g ∈ G and kg = k), then this is well known. If ρ̂ : L → R is any function transforming
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as in (1.3) and �g(k) = 〈�, k[g]〉 �= 0, then ρ̂(k) = 0. This is observed as a dark spot in the
x-ray-diffraction pattern and is called a systematic extinction.

Not every gauge invariant is of the above form. Suppose that g, h ∈ G and q ∈ R3∗

satisfy

(i) gh = hg;
(ii) kg = qg − q, kh = qh − q ∈ L;

(iii) �g(kh) − �h(kg) �= 0.

Then kg[h] − kh[g] represents a non-trivial homology class; cf (5.4). In this situation König
and Mermin [15] describe a projective representation of H = 〈g, h〉 ⊆ G that commutes
with the Hamiltonian hq corresponding to the wave vector q and the potential of the crystal.
Therefore, every eigenspace of the Hamiltonian is a projective subrepresentation, with the
same factor system: (g, h) �→ �h(qg − q). König and Mermin note that the quantity (iii)
is gauge invariant and, since it does not vanish, this shows that the projective representation
(on each eigenspace) is not equivalent to an ordinary representation. In particular, each
eigenspace of the Hamiltonian has dimension greater than 1, since one-dimensional projective
representations have trivial factor systems. This is expressed by saying that each energy level
of hq is degenerate, and the phenomenon is sometimes called band sticking.

We interpret part of this argument as follows. Let H = 〈g, h〉. Then (i) implies that
c = [g|h]− [h|g] is a 2-cycle with coefficients in Z (cf (5.4) and [32, section II.3, exercise 1]).
Condition (ii) implies that σ(g) = kg−1 = qg−1 − q represents a class in H 1(H,L), so
σ ∩ c = kg[h] − kh[g] represents a class in H1(G,L). Thus (iii) means that 〈�, σ ∩ c〉 �= 0.
Since � ∪ σ is the 2-cocycle (g, h) �→ �h(kg), the following proposition applies.

Proposition 8.1. Let H be a finite subgroup of O(3) and let L ⊆ R3∗ be a lattice stable under
H. Let c ∈ H2(H, Z), σ ∈ H 1(H,L) and � ∈ H 1(H, L̂) be given. Then

〈�, σ ∩ c〉 = 〈� ∪ σ, c〉.
In particular, if this quantity is non-zero, then � represents a non-symmorphic space group,
and the factor system � ∪ σ is non-trivial.

Proof. This follows from associativity of cup and cap products, as described above, and from
the compatibility 〈α, β〉 = −α ∩ β between the duality pairing and the cap product. �

Computations of H1(G,L) using the methods described in section 7 suggest that this
homology group is usually generated by cycles of the form σ ∩ c as described in the
proposition and those of the form k[g] with kg = k. The hypotheses of the proposition
are thus less restrictive than they seem at first glance. There are, however, examples where
H1(G,L) is not generated by such cycles. It is not clear what, if any, physical consequences
there are in such cases. The authors hope to return to both these points in future papers.
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